Learning Bounded Treewidth Bayesian Networks with Thousands of Variables

نویسندگان

  • Mauro Scanagatta
  • Giorgio Corani
  • Cassio Polpo de Campos
  • Marco Zaffalon
چکیده

We present a method for learning treewidthbounded Bayesian networks from data sets containing thousands of variables. Bounding the treewidth of a Bayesian greatly reduces the complexity of inferences. Yet, being a global property of the graph, it considerably increases the difficulty of the learning process. We propose a novel algorithm for this task, able to scale to large domains and large treewidths. Our novel approach consistently outperforms the state of the art on data sets with up to ten thousand variables.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Treewidth-Bounded Bayesian Networks with Thousands of Variables

We present a method for learning treewidth-bounded Bayesian networks from data sets containing thousands of variables. Bounding the treewidth of a Bayesian network greatly reduces the complexity of inferences. Yet, being a global property of the graph, it considerably increases the difficulty of the learning process. Our novel algorithm accomplishes this task, scaling both to large domains and ...

متن کامل

Approximate Structure Learning for Large Bayesian Networks

We present approximate structure learning algorithms for Bayesian networks. We discuss on the two main phases of the task: the preparation of the cache of the scores and structure optimization, both with bounded and unbounded treewidth. We improve on state-ofthe-art methods that rely on an ordering-based search by sampling more effectively the space of the orders. This allows for a remarkable i...

متن کامل

Efficient learning of bounded-treewidth Bayesian networks from complete and incomplete data sets

Learning a Bayesian networks with bounded treewidth is important for reducing the complexity of the inferences. We present a novel anytime algorithm (kMAX) method for this task, which scales up to thousands of variables. Through extensive experiments we show that it consistently yields higher-scoring structures than its competitors on complete data sets. We then consider the problem of structur...

متن کامل

Advances in Learning Bayesian Networks of Bounded Treewidth

This work presents novel algorithms for learning Bayesian networks of bounded treewidth. Both exact and approximate methods are developed. The exact method combines mixed integer linear programming formulations for structure learning and treewidth computation. The approximate method consists in sampling k-trees (maximal graphs of treewidth k), and subsequently selecting, exactly or approximatel...

متن کامل

Learning Optimal Bounded Treewidth Bayesian Networks via Maximum Satisfiability

Bayesian network structure learning is the well-known computationally hard problem of finding a directed acyclic graph structure that optimally describes given data. A learned structure can then be used for probabilistic inference. While exact inference in Bayesian networks is in general NP-hard, it is tractable in networks with low treewidth. This provides good motivations for developing algor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1605.03392  شماره 

صفحات  -

تاریخ انتشار 2016